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Abstract

In this work, we introduce Janus-Pro, an advanced version of the previous work Janus. Specif-
ically, Janus-Pro incorporates (1) an optimized training strategy, (2) expanded training data,
and (3) scaling to larger model size. With these improvements, Janus-Pro achieves significant
advancements in both multimodal understanding and text-to-image instruction-following capa-
bilities, while also enhancing the stability of text-to-image generation. We hope this work will
inspire further exploration in the field. Code and models are publicly available.

1. Introduction
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Figure 1 | Multimodal understanding and visual generation results from our Janus-Pro. For multi-
modal understand, we average the accuracy of POPE, MME-Perception, GQA, and MMMU. The scores of
MME-Perception are divided by 20 to scale to [0, 100]. For visual generation, we evaluate the performance
on two instruction-following benchamrks, GenEval and DPG-Bench. Overall, Janus-Pro outperforms the
previous state-of-the-art unified multimodal models as well as some task-specific models. Best viewed
on screen.
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The face of a beautiful girl.

Janus-Pro-7BJanus

短 prompt ，美感，细节

A clear image of a blackboard with a clean,
dark green surface and the word 'Hello' written
precisely and legibly in the center with bold,
white chalk letters.

Janus-Pro-7BJanus

Capture a close-up shot of a vibrant sunflower
in full bloom, with a honeybee perched on its
petals, its delicate wings catching the sunlight.

Janus-Pro-7BJanus

A minimalist photo of an orange tangerine
with a green stem and leaves, symbolizing
prosperity, sitting on a red silk cloth during
Chinese New Year.

A steaming cup of coffee on a wooden table. A glass of red wine on a reflective surface.

Figure 2 | Comparison of text-to-image generation between Janus-Pro and its predecessor,
Janus. Janus-Pro delivers more stable outputs for short prompts, with improved visual quality,
richer details, and the ability to generate simple text. The image resolution is 384 × 384. Best
viewed on screen.

Recent advancements in unified multimodal understanding and generation models have
demonstrated significant progress [30, 40, 45, 46, 48, 50, 54, 55]. These approaches have been
proven to enhance the instruction-following capabilities in visual generation tasks while re-
ducing model redundancy. Most of these methods utilize the same visual encoder to process
inputs for both multimodal understanding and generation tasks. Since the representations
required for these two tasks differ, this often results in suboptimal performance in multimodal
understanding. To address this issue, Janus [46] proposes decoupling visual encoding, which
alleviates the conflict between multimodal understanding and generation tasks, achieving
excellent performance in both tasks.

As a pioneering model, Janus is validated at the 1B parameter scale. However, due to the
limited amount of training data and the relatively small model capacity, it exhibites certain
shortcomings, such as suboptimal performance on short prompts image generation and unstable
text-to-image generation quality. In this paper, we introduce Janus-Pro, an enhanced version of
Janus that incorporates improvements across three dimensions: training strategies, data, and
model size. The Janus-Pro series includes two model sizes: 1B and 7B, demonstrating scalability
of the visual encoding decoding method.

We evaluate Janus-Pro on multiple benchmarks, and the results reveal its superior multi-
modal understanding capabilities and significantly improved text-to-image instruction-following
performance. Specifically, Janus-Pro-7B achieved a score of 79.2 on the multimodal understand-
ing benchmark MMBench [29], surpassing state-of-the-art unified multimodal models such as
Janus [46] (69.4), TokenFlow [34] (68.9) and MetaMorph [42] (75.2). Additionally, in the text-to-
image instruction-following leaderboard GenEval [14], Janus-Pro-7B scores 0.80, outperforming
Janus [46] (0.61), DALL-E 3 (0.67), and Stable Diffusion 3 Medium [11] (0.74).
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Figure 3 | Architecture of our Janus-Pro. We decouple visual encoding for multimodal under-
standing and visual generation. “Und. Encoder” and “Gen. Encoder” are abbreviations for
“Understanding Encoder” and “Generation Encoder”, respectively. Best viewed on screen.

2. Method

2.1. Architecture

The architecture of Janus-Pro is shown in Figure 3, which is the same as Janus [46]. The core
design principle of the overall architecture is to decouple visual encoding for multimodal
understanding and generation. We apply independent encoding methods to convert the raw
inputs into features, which are then processed by an unified autoregressive transformer. For
multimodal understanding, we use the SigLIP [53] encoder to extract high-dimensional semantic
features from images. These features are flattened from a 2-D grid into a 1-D sequence, and an
understanding adaptor is used to map these image features into the input space of the LLM. For
visual generation tasks, we use the VQ tokenizer from [38] to convert images into discrete IDs.
After the ID sequence is flattened into 1-D, we use a generation adaptor to map the codebook
embeddings corresponding to each ID into the input space of the LLM. We then concatenate
these feature sequences to form a multimodal feature sequence, which is subsequently fed into
the LLM for processing. Apart from the built-in prediction head in the LLM, we also utilize a
randomly initialized prediction head for image predictions in the visual generation task. The
entire model adheres to an autoregressive framework.

2.2. Optimized Training Strategy

The previous version of Janus employs a three-stage training process. Stage I focuses on
training the adaptors and the image head. Stage II handles unified pretraining, during which all
components except the understanding encoder and the generation encoder has their parameters
updated. Stage III is supervised fine-tuning, building upon Stage II by further unlocking the
parameters of the understanding encoder during training. This training strategy has certain
issues. In Stage II, Janus divides the training for text-to-image capabilities into two parts
following PixArt [4]. The first part trains on ImageNet [9] data, using image category names
as prompts for text-to-image generation, with the goal of modeling pixel dependence. The
second part trains on normal text-to-image data. During implementation, 66.67% of the text-
to-image training steps in Stage II are allocated to the first part. However, through further
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experimentation, we find that this strategy is suboptimal and lead to significant computational
inefficiency.

To address this issue, we make two modifications.

• Longer Training in Stage I: We increase the training steps in Stage I, allowing sufficient
training on the ImageNet dataset. Our findings reveals that even with the LLM parameters
fixed, the model could effectively model pixel dependence and generate reasonable images
based on category names.

• Focused Training in Stage II: In Stage II, we drop ImageNet data and directly utilize nor-
mal text-to-image data to train the model to generate images based on dense descriptions.
This redesigned approach enables Stage II to utilize the text-to-image data more efficiently,
resulting in improved training efficiency and overall performance.

We also adjust the data ratio in Stage III supervised fine-tuning process across different types
of datasets, changing the proportion of multimodal data, pure text data, and text-to-image data
from 7:3:10 to 5:1:4. By slightly reducing the proportion of text-to-image data, we observe that
this adjustment allows us to maintain strong visual generation capabilities while achieving
improved multimodal understanding performance.

2.3. Data Scaling

We scale up the training data used for Janus in both multimodal understanding and visual
generation aspects.

• Multimodal Understanding. For the Stage II pretraining data, we refer to DeepSeek-
VL2 [49] and add approximately 90 million samples. These include image caption datasets
(e.g., YFCC [31]), as well as data for table, chart, and document understanding (e.g., Doc-
matix [20]). For the Stage III supervised fine-tuning data, we also incorporate additional
datasets from DeepSeek-VL2, such as MEME understanding, Chinese conversational data,
and datasets aimed at enhancing dialogue experiences. These additions significantly
expanded the model’s capabilities, enriching its ability to handle diverse tasks while
improving the overall conversational experience.

• Visual Generation. We observe that the real-world data used in the previous version of
Janus lacks quality and contains significant noise, which often leads to instability in text-
to-image generation, resulting in aesthetically poor outputs. In Janus-Pro, we incorporate
approximately 72 million samples of synthetic aesthetic data, bringing the ratio of real to
synthetic data to 1:1 during the unified pretraining stage. The prompts for these synthetic
data samples are publicly available, such as those in [43]. Experiments demonstrat that the
model converges faster when trained on synthetic data, and the resulting text-to-image
outputs are not only more stable but also exhibit significantly improved aesthetic quality.

2.4. Model Scaling

The previous version of Janus validates the effectiveness of visual encoding decoupling using
a 1.5B LLM. In Janus-Pro, we scaled the model up to 7B, with the hyperparameters of both
the 1.5B and 7B LLMs detailed in Table 1. We observe that when utilizing a larger-scale LLM,
the convergence speed of losses for both multimodal understanding and visual generation
improved significantly compared to the smaller model. This finding further validates the strong
scalability of this approach.
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Table 1 | Architectural configuration for Janus-Pro. We list the hyperparameters of the architec-
ture.

Janus-Pro-1B Janus-Pro-7B

Vocabulary size 100K 100K
Embedding size 2048 4096
Context Window 4096 4096
#Attention heads 16 32
#Layers 24 30

Table 2 | Detailed hyperparameters for training Janus-Pro. Data ratio refers to the ratio of
multimodal understanding data, pure text data, and visual generation data.

Janus-Pro-1B Janus-Pro-7B

Hyperparameters Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3
Learning rate 1.0 × 10−3 1.0 × 10−4 4.0 × 10−5 1.0 × 10−3 1.0 × 10−4 4.0 × 10−5

LR scheduler Constant Constant Constant Constant Constant Constant
Weight decay 0.0 0.0 0.0 0.0 0.0 0.0
Gradient clip 1.0 1.0 1.0 1.0 1.0 1.0
Optimizer AdamW (𝛽1 = 0.9, 𝛽2 = 0.95) AdamW (𝛽1 = 0.9, 𝛽2 = 0.95)
Warm-up steps 600 5000 0 600 5000 0
Training steps 20K 360K 80K 20K 360K 40K
Batch size 256 512 128 256 512 128
Data Ratio 1:0:3 2:3:5 5:1:4 1:0:3 2:3:5 5:1:4

3. Experiments

3.1. Implementation Details

In our experiments, we utilize DeepSeek-LLM (1.5B and 7B) [3] with a maximum supported
sequence length of 4096 as the base language model. For the vision encoder used in understand-
ing tasks, we select SigLIP-Large-Patch16-384 [53]. The generation encoder has a codebook of
size 16, 384 and downsamples images by a factor of 16. Both the understanding adaptor and
the generation adaptor are two-layer MLPs. The detailed hyperparameters for each stage are
provided in Table 2. All images are resized to 384 × 384 pixels. For multimodal understanding
data, we resize the long side of the image and pad the short side with the background color
(RGB: 127, 127, 127) to reach 384. For visual generation data, the short side is resized to 384, and
the long side is cropped to 384. We use sequence packing during training to improve training
efficiency. We mix all data types according to the specified ratios in a single training step.
Our Janus is trained and evaluated using HAI-LLM [15], which is a lightweight and efficient
distributed training framework built on top of PyTorch. The whole training process took about
7/14 days on a cluster of 16/32 nodes for 1.5B/7B model, each equipped with 8 Nvidia A100
(40GB) GPUs.

3.2. Evaluation Setup

Multimodal Understanding. To assess multimodal understanding capabilities, we evaluate our
model on widely recognized image-based vision-language benchmarks, which include GQA
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Table 3 | Comparison with state-of-the-arts on multimodal understanding benchmarks. “Und.”
and “Gen.” denote “understanding” and “generation”, respectively. Models using external
pretrained diffusion model are marked with †.

Type Model # LLM Params POPE↑ MME-P↑ MMB↑ SEED↑ GQA↑ MMMU↑ MM-Vet↑

Und. Only LLaVA-v1.5-Phi-1.5 [50] 1.3B 84.1 1128.0 - - 56.5 30.7 -
MobileVLM [6] 1.4B 84.5 1196.2 53.2 - 56.1 - -
MobileVLM-V2 [7] 1.4B 84.3 1302.8 57.7 - 59.3 - -
MobileVLM [6] 2.7B 84.9 1288.9 59.6 - 59.0 - -
MobileVLM-V2 [7] 2.7B 84.7 1440.5 63.2 - 61.1 - -
LLaVA-Phi [56] 2.7B 85.0 1335.1 59.8 - - - 28.9
LLaVA [27] 7B 76.3 809.6 38.7 33.5 - - 25.5
LLaVA-v1.5 [26] 7B 85.9 1510.7 64.3 58.6 62.0 35.4 31.1
InstructBLIP [8] 7B - - 36.0 53.4 49.2 - 26.2
Qwen-VL-Chat [1] 7B - 1487.5 60.6 58.2 57.5 - -
IDEFICS-9B [19] 8B - - 48.2 - 38.4 - -
Emu3-Chat [45] 8B 85.2 1244 58.5 68.2 60.3 31.6 37.2
InstructBLIP [8] 13B 78.9 1212.8 - - 49.5 - 25.6

Und. and Gen. DreamLLM† [10] 7B - - - - - - 36.6
LaVIT† [18] 7B - - - - 46.8 - -
MetaMorph† [42] 8B - - 75.2 71.8 - - -
Emu† [39] 13B - - - - - - -
NExT-GPT† [47] 13B - - - - - - -

Show-o [50] 1.3B 73.8 948.4 - - 48.7 25.1 -
D-Dit [24] 2.0B 84.0 1124.7 - - 59.2 - -
Gemini-Nano-1 [41] 1.8B - - - - - 26.3 -
ILLUME [44] 7B 88.5 1445.3 65.1 72.9 − 38.2 37.0
TokenFlow-XL [34] 13B 86.8 1545.9 68.9 68.7 62.7 38.7 40.7
LWM [28] 7B 75.2 - - - 44.8 - 9.6
VILA-U [48] 7B 85.8 1401.8 - 59.0 60.8 - 33.5
Chameleon [40] 7B - - - - - 22.4 8.3
Janus 1.5B 87.0 1338.0 69.4 63.7 59.1 30.5 34.3
Janus-Pro-1B 1.5B 86.2 1444.0 75.5 68.3 59.3 36.3 39.8
Janus-Pro-7B 7B 87.4 1567.1 79.2 72.1 62.0 41.0 50.0

[17], POPE [23], MME [12], SEED [21], MMB [29], MM-Vet [51], and MMMU [52].

Visual Generation. For evaluating visual generation capabilities, we use GenEval [14] and
DPG-Bench [16]. GenEval is a challenging benchmark for image-to-text generation, designed to
reflect the comprehensive generative abilities of visual generation models by offering a detailed
instance-level analysis of their compositional capabilities. DPG-Bench (Dense Prompt Graph
Benchmark) is a comprehensive dataset consisting of 1065 lengthy, dense prompts, designed to
assess the intricate semantic alignment capabilities of text-to-image models.

3.3. Comparison with State-of-the-arts

Multimodal Understanding Performance. We compare the proposed method with state-of-
the-art unified models and understanding-only models in Table 3. Janus-Pro achieves the
overall best results. This can be attributed to decoupling the visual encoding for multimodal
understanding and generation, mitigating the conflict between these two tasks. When compared
to models with significantly larger sizes, Janus-Pro remains highly competitive. For instance,
Janus-Pro-7B outperforms TokenFlow-XL (13B) on all benchmarks except GQA.
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Table 4 | Evaluation of text-to-image generation ability on GenEval benchmark. “Und.”
and “Gen.” denote “understanding” and “generation”, respectively. Models using external
pretrained diffusion model are marked with †.

Type Method Single Obj. Two Obj. Counting Colors Position Color Attri. Overall↑

Gen. Only

LlamaGen [38] 0.71 0.34 0.21 0.58 0.07 0.04 0.32
LDM [37] 0.92 0.29 0.23 0.70 0.02 0.05 0.37
SDv1.5 [37] 0.97 0.38 0.35 0.76 0.04 0.06 0.43
PixArt-𝛼 [4] 0.98 0.50 0.44 0.80 0.08 0.07 0.48
SDv2.1 [37] 0.98 0.51 0.44 0.85 0.07 0.17 0.50
DALL-E 2 [35] 0.94 0.66 0.49 0.77 0.10 0.19 0.52
Emu3-Gen [45] 0.98 0.71 0.34 0.81 0.17 0.21 0.54
SDXL [32] 0.98 0.74 0.39 0.85 0.15 0.23 0.55
DALL-E 3 [2] 0.96 0.87 0.47 0.83 0.43 0.45 0.67
SD3-Medium [11] 0.99 0.94 0.72 0.89 0.33 0.60 0.74

Und. and Gen.

SEED-X† [13] 0.97 0.58 0.26 0.80 0.19 0.14 0.49
Show-o [50] 0.95 0.52 0.49 0.82 0.11 0.28 0.53
D-DiT [24] 0.97 0.80 0.54 0.76 0.32 0.50 0.65
LWM [28] 0.93 0.41 0.46 0.79 0.09 0.15 0.47
Transfusion [55] - - - - - - 0.63
ILLUME [44] 0.99 0.86 0.45 0.71 0.39 0.28 0.61
TokenFlow-XL [28] 0.95 0.60 0.41 0.81 0.16 0.24 0.55
Chameleon [40] - - - - - - 0.39
Janus [46] 0.97 0.68 0.30 0.84 0.46 0.42 0.61
Janus-Pro-1B 0.98 0.82 0.51 0.89 0.65 0.56 0.73
Janus-Pro-7B 0.99 0.89 0.59 0.90 0.79 0.66 0.80

Table 5 | Performances on DPG-Bench. The methods in this table are all generation-specific
models except Janus and Janus-Pro.

Method Global Entity Attribute Relation Other Overall↑

SDv1.5 [36] 74.63 74.23 75.39 73.49 67.81 63.18
PixArt-𝛼 [4] 74.97 79.32 78.60 82.57 76.96 71.11
Lumina-Next [57] 82.82 88.65 86.44 80.53 81.82 74.63
SDXL [33] 83.27 82.43 80.91 86.76 80.41 74.65
Playground v2.5 [22] 83.06 82.59 81.20 84.08 83.50 75.47
Hunyuan-DiT [25] 84.59 80.59 88.01 74.36 86.41 78.87
PixArt-Σ [5] 86.89 82.89 88.94 86.59 87.68 80.54
Emu3-Gen [45] 85.21 86.68 86.84 90.22 83.15 80.60
Janus 82.33 87.38 87.70 85.46 86.41 79.68
DALL-E 3 [2] 90.97 89.61 88.39 90.58 89.83 83.50
SD3-Medium [11] 87.90 91.01 88.83 80.70 88.68 84.08
Janus 82.33 87.38 87.70 85.46 86.41 79.68
Janus-Pro-1B 87.58 88.63 88.17 88.98 88.30 82.63
Janus-Pro-7B 86.90 88.90 89.40 89.32 89.48 84.19

Visual Generation Performance. We report visual generation performance on GenEval and
DPG-Bench. As shown in Table 4, our Janus-Pro-7B obtains 80% overall accuracy on GenEval,
which outperforms all the other unified or generation-only methods, e.g., Transfusion [55] (63%)
SD3-Medium (74%) and DALL-E 3 (67%). This demonstrates that our approach has better
instruction-following capabilities. As shown in Table 5, Janus-Pro achieves a score of 84.19 on
DPG-Bench, surpassing all other methods. This demonstrates that Janus-Pro excels in following
dense instructions for text-to-image generation.

3.4. Qualitative Results
We present results on multimodal understanding in Figure 4. Janus-Pro exhibits impressive
comprehension abilities when handling inputs from various contexts, showcasing its powerful
capabilities. We also present some text-to-image generation results in the lower part of Figure 4.
The images generated by Janus-Pro-7B are highly realistic, and despite having a resolution of
only 384 × 384, they still contain a lot of details. For imaginative and creative scenes, Janus-Pro-
7B accurately captures the semantic information from the prompts, producing well-reasoned
and coherent images.
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Text-To-Image Generation

Image Description

Describe this scene in detail.

This image depicts a stunning coastal landscape featuring a series of tall, rugged rock formations emerging from the ocean.
The rocks are layered with sedimentary rock, giving them a distinct stratified appearance. The largest formation is
prominently positioned in the foreground, with smaller ones receding into the distance. The ocean waves crash against the
base of these formations, creating white foam and a dynamic sense of movement.

The coastline is sandy, with a narrow strip of beach visible on the right side of the image. The beach is bordered by steep
cliffs, which rise dramatically from the shoreline. The cliffs are covered in patches of green vegetation, adding a touch of
color to the otherwise earthy tones of the rocks.

The sky above is overcast, with thick clouds that suggest an impending storm or recent rainfall. The light is diffused, casting a
soft, muted glow over the entire scene. Despite the cloudy sky, there is a sense of tranquility and natural beauty in this
coastal landscape.

这张图⽚展示的是中国杭州的⻄湖，特别是著名的
三潭印⽉岛。图⽚中的建筑是三潭印⽉的亭⼦，周
围是平静的湖⽔，远处是连绵的⼭脉。⻄湖是中国
著名的旅游景点之⼀，以其美丽的⾃然景观和丰富
的历史⽂化⽽闻名。

猜猜这是哪里？

Landmark Recognition

What‘s written on the large black board?

The large black board has the 
following text:

"Serving Soul since Twenty Twelve"

Additionally, there are smaller 
sections with more detailed 
information, but the main heading 
is clearly visible.

Text Recognition

This cake is themed around the classic cartoon 
character Tom and Jerry. The cake features the 
characters Tom (the cat) and Jerry (the mouse) in a 
playful setting, with a backdrop that includes the 
words "Tom & Jerry”. The cake itself is decorated 
with fondant shaped like cheese, which is a 
recurring theme in the cartoon series. The design 
also includes a small fondant house with a door, 
adding to the whimsical and playful theme of the 
cake.Can you introduce the 

background story of this cake?

General Knowledge

A young woman with freckles 
wearing a straw hat, standing 

in a golden wheat field.

A single drop of water clinging 
to a green leaf, with sunlight 
creating a faint rainbow pris

An ancient stone bridge 
arching over a crystal-clear 

mountain stream, surrounded 
by lush greenery.

A golden retriever lying peacefully 
on a wooden porch, with autumn 

leaves scattered around.

A glowing crystal ball floating 
above a sandstone table in the 

middle of a desert at sunset.

A tiny galaxy contained inside 
a glass bottle, glowing brightly 

against a dark velvet cloth.

A giant whale flying through a 
city skyline, surrounded by 
floating glowing lanterns.

Astronaut in a jungle, cold 
color palette, muted colors, 

detailed, 8k

Figure 4 | Qualitative results of multimodal understanding and visual generation capability.
The model is Janus-Pro-7B and the image output resolution of visual generation is 384 × 384.
Best viewed on screen. 8



4. Conclusion

This paper introduces improvements to Janus from three aspects: training strategy, data, and
model size. These enhancements have led to significant advancements in both multimodal
understanding and text-to-image instruction-following capabilities. However, Janus-Pro still
has certain limitations. In terms of multimodal understanding, the input resolution is limited
to 384 × 384, which affects its performance in fine-grained tasks such as OCR. For text-to-
image generation, the low resolution, combined with reconstruction losses introduced by the
vision tokenizer, results in images that, while rich in semantic content, still lack fine details.
For example, small facial regions occupying limited image space may appear under-detailed.
Increasing the image resolution could mitigate these issues.
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